Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(9): e9339, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36188518

RESUMO

Time-series data offer wide-ranging opportunities to test hypotheses about the physical and biological factors that influence species abundances. Although sophisticated models have been developed and applied to analyze abundance time series, they require information about species detectability that is often unavailable. We propose that in many cases, simpler models are adequate for testing hypotheses. We consider three relatively simple regression models for time series, using simulated and empirical (fish and mammal) datasets. Model A is a conventional generalized linear model of abundance, model B adds a temporal autoregressive term, and model C uses an estimate of population growth rate as a response variable, with the option of including a term for density dependence. All models can be fit using Bayesian and non-Bayesian methods. Simulation results demonstrated that model C tended to have greater support for long-lived, lower-fecundity organisms (K life-history strategists), while model A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms (r life-history strategists). Analysis of real-world fish and mammal datasets found that models A, B, and C each enjoyed support for at least some species, but sometimes yielded different insights. In particular, model C indicated effects of predictor variables that were not evident in analyses with models A and B. Bayesian and frequentist models yielded similar parameter estimates and performance. We conclude that relatively simple models are useful for testing hypotheses about the factors that influence abundance in time-series data, and can be appropriate choices for datasets that lack the information needed to fit more complicated models. When feasible, we advise fitting datasets with multiple models because they can provide complementary information.

2.
Nat Sustain ; 5: 586-592, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36213515

RESUMO

Knowing where and when rivers flow is paramount to managing freshwater ecosystems. Yet stream gauging stations are distributed sparsely across rivers globally and may not capture the diversity of fluvial network properties and anthropogenic influences. Here we evaluate the placement bias of a global stream gauge dataset on its representation of socioecological, hydrologic, climatic and physiographic diversity of rivers. We find that gauges are located disproportionally in large, perennial rivers draining more human-occupied watersheds. Gauges are sparsely distributed in protected areas and rivers characterized by non-perennial flow regimes, both of which are critical to freshwater conservation and water security concerns. Disparities between the geography of the global gauging network and the broad diversity of streams and rivers weakens our ability to understand critical hydrologic processes and make informed water-management and policy decisions. Our findings underscore the need to address current gauge placement biases by investing in and prioritizing the installation of new gauging stations, embracing alternative water-monitoring strategies, advancing innovation in hydrologic modelling, and increasing accessibility of local and regional gauging data to support human responses to water challenges, both today and in the future.

3.
Ecology ; 102(3): e03261, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226642

RESUMO

The United States is home to many anuran species, each with traits that set them apart from one another. Understanding trait variation within and between anurans is key to many successful conservation, management, and research efforts. However, compiling trait data is intensive and time consuming. Trait databases can meet this need, but currently there is no detailed database that collates trait data for anurans of the contiguous United States. into a single location with transparency regarding original data sources. Furthermore, many currently available trait databases rarely report multiple data points for a given species' trait, frequently reporting a single averaged value. We present an anuran traits database for the contiguous United States that includes trait data from 411 unique references. We collated trait values for 106 native and nonnative species using a tiered search protocol. First, we digitized trait data from 33 state guide books for 12 ecological, morphological, and life history traits commonly reported in the literature. We then performed a targeted search of the primary literature to address data gaps, ultimately identifying an additional 356 peer-reviewed publications, theses, and agency reports with data fitting our criteria. Finally, we digitized trait data from 22 national and regional guidebooks. Following data compilation, we conducted an intensive data quality check procedure that included both manual and statistical analyses. For full transparency, all trait values are traceable to their original reference with additional metrics (e.g., reference count, data tier) to allow users to easily filter the full data set to fit the user's needs. Overall, we report 89% of included species with trait values for at least half of the 12 traits included, providing high coverage for interspecific analyses. With a high degree of transparency, inclusion of all original data sources, and a tiered system for cataloguing data source type, ATraiU can uniquely contribute to anuran ecology and conservation in the United States. Please cite this data paper when using the data. If using a specific trait value or values, please cite the original reference(s).

4.
WIREs Water ; 7(5)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-33365126

RESUMO

Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.

5.
Water (Basel) ; 12(7): 1980, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-33274073

RESUMO

Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of 12 epithets to learn (Objective 1-O1) if epithet topics are consistent across Web of Science categories using latent Dirichlet allocation topic modeling. We also analyzed publication rates and topics over time to (O2) assess changes in epithet use. We compiled literature definitions to (O3) identify how epithets have been delineated and, lastly, suggest universal terms and definitions. We found a lack of consensus in epithet use between and among various fields. We also found that epithet usage has changed over time, as research focus has shifted from description to modeling. We conclude that multiple epithets are redundant. We offer specific definitions for three epithets (non-perennial, intermittent, and ephemeral) to guide consensus on epithet use. Limiting the number of epithets used in non-perennial river research can facilitate more effective communication among research fields and provide clear guidelines for writing regulatory documents.

6.
WIREs Water ; 7(3)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32802326

RESUMO

Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed-scale processes. When stream gages read zero, this may indicate that the stream has fully dried; however, zero-flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero-flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero-flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human-driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero-flow interpretations. We also highlight additional methodss for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero-flow gage readings and implications for reach- and watershed-scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero-flows will only attain greater importance in a more variable and changing hydrologic climate.

8.
PLoS One ; 14(4): e0211848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017895

RESUMO

Long-term monitoring of species assemblages provides a unique opportunity to test hypotheses regarding environmentally induced directional trajectories of freshwater species assemblages. We used 57 years of lockchamber fish rotenone and boat electrofishing survey data (1957-2014) collected by the Ohio River Valley Water Sanitation Commission (ORSANCO) to test for directional trajectories in taxonomy, trophic classifications, and life history strategies of freshwater fish assemblages in the Ohio River Basin. We found significant changes in taxonomic and trophic composition of freshwater fishes in the Ohio River Basin. Annual species richness varied from 31 to 90 species and generally increased with year. Temporal trajectories were present for taxonomic and trophic assemblages. Assemblage structure based on taxonomy was correlated with land use change (decrease in agriculture and increase in forest). Taxonomic assemblage structure was also correlated with altered hydrology variables of increased minimum discharge, decreased fall rate, and increased rise rate. Trophic composition of fish catch correlated with land use change (decrease in agriculture and increase in forest) and altered hydrology. Altered hydrology of increased minimum discharge, increased fall discharge, decreased base flows, and increased number of high pulse events was correlated with increased counts of herbivore-detritivores and decreased counts of piscivores and planktivores. We did not find directional changes in life history composition. We hypothesized a shift occurred from benthic to phytoplankton production throughout the basin that may have decreased secondary production of benthic invertebrates. This may also be responsible for lower trophic position of invertivore and piscivore fishes observed in other studies.


Assuntos
Peixes , Características de História de Vida , Agricultura , Animais , Biodiversidade , Peixes/classificação , Peixes/fisiologia , Florestas , Hidrologia , Ohio , Rios
9.
PLoS One ; 11(8): e0160655, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27504892

RESUMO

Population attributes such as diversity, connectivity, and structure are important components of understanding species persistence and vulnerability to extinction. Hyla wrightorum, the Arizona treefrog, is native to the southwestern United States and Mexico, and an isolated group of populations exists in the Huachuca Mountains and Canelo Hills (HMCH) of southeastern Arizona, USA. Due to concerns about declining observations of the species within the isolated HMCH portion of its range, the HMCH group is currently a candidate for federal protection under the U.S. Endangered Species Act. We present results of a genetic study examining population diversity, structure, and connectivity within the HMCH region. We sampled DNA from H. wrightorum larvae and adults from ten distinct locations, 8 of which were breeding sites and 4 of which were previously undescribed localities for the species. We developed and genotyped 17 polymorphic microsatellite loci and quantified genetic diversity, population differentiation, and landscape influences on population genetic structure. We found evidence of larger than expected effective population sizes, significant genetic differentiation between populations, and evidence of distance being the primary driver of genetic structure of populations with some influence of slope and canopy cover. We found little evidence of recent genetic bottlenecks, and individual-based analyses indicate admixture between populations despite significant genetic differentiation. These patterns may indicate that the breeding sites within the Huachuca Mountains constitute a metapopulation. We suggest that the HMCH region may contain larger and more connected breeding populations than previously understood, but the dynamics of this system and the limited geographic extent of the HMCH group justify current concern for the persistence of the species in this region. Efforts to ensure availability of high-quality breeding habitats and control for local threats such as effects of invasive predators may be critical to the persistence of these unique populations of H. wrightorum.


Assuntos
Anuros/genética , Animais , Cruzamento , Fluxo Gênico , Variação Genética , Geografia , Dinâmica Populacional , Simpatria/genética
10.
Ecology ; 96(5): 1371-82, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26236850

RESUMO

The study of how population genetic structure is shaped by attributes of the environment is a central scientific pursuit in ecology and conservation. But limited resources may prohibit landscape genetics studies for many threatened species, particularly given the pace of current environmental change. Understanding the extent to which species' ecological strategies--their life histories, biology, and behavior-predict patterns and drivers of population connectivity is a critical step in evaluating the potential of multi-taxa inference in landscape genetics. We present results of a landscape genetic study of three dryland amphibians: the canyon treefrog (Hyla arenicolor), red-spotted toad (Anaxyrus punctatus), and Mexican spadefoot (Spea multiplicata). These species characterize a range of ecological strategies, driven primarily by different water dependencies, enabling amphibian survival in arid and semiarid environments. We examined a suite of hypothesized relationships between genetic connectivity and landscape connectivity across species. We found a positive relationship between population differentiation and water dependency, e.g., longer larval development periods and site fidelity for reliable water sources. We also found that aquatic connectivity is important for all species, particularly when considered with topography (slope). The effect of spatial scale varied by species, with canyon treefrogs and Mexican spadefoots characterized by relatively consistent results at different scales in contrast to the stark differences in results for red-spotted toads at different scales. Using ecological information to predict relationships between genetic and landscape connectivity is a promising approach for multi-taxa inference and may help inform conservation efforts where single-species genetic studies are not possible.


Assuntos
Distribuição Animal/fisiologia , Anuros/genética , Anuros/fisiologia , Ecossistema , Variação Genética , Água , Animais , Arizona , Clima Desértico , Marcadores Genéticos , Genética Populacional , Repetições de Microssatélites , Especificidade da Espécie
11.
Mol Ecol ; 24(1): 54-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25402260

RESUMO

Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population-level data for large numbers of species, ecologists seek to identify proximate organismal traits-such as dispersal ability, habitat preference and life history-that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape-based metrics of resistance. We found that the moderate-disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation-by-distance pattern, suggesting migration-drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong-flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best-fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale-dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.


Assuntos
Distribuição Animal , Clima Desértico , Ecossistema , Genética Populacional , Insetos/genética , Animais , Organismos Aquáticos/genética , Arizona , Fluxo Gênico , Deriva Genética , Funções Verossimilhança , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos
12.
Conserv Biol ; 28(5): 1225-35, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24762116

RESUMO

Development of skills in science communication is a well-acknowledged gap in graduate training, but the constraints that accompany research (limited time, resources, and knowledge of opportunities) make it challenging to acquire these proficiencies. Furthermore, advisors and institutions may find it difficult to support graduate students adequately in these efforts. The result is fewer career and societal benefits because students have not learned to communicate research effectively beyond their scientific peers. To help overcome these hurdles, we developed a practical approach to incorporating broad science communication into any graduate-school time line. The approach consists of a portfolio approach that organizes outreach activities along a time line of planned graduate studies. To help design the portfolio, we mapped available science communication tools according to 5 core skills essential to most scientific careers: writing, public speaking, leadership, project management, and teaching. This helps graduate students consider the diversity of communication tools based on their desired skills, time constraints, barriers to entry, target audiences, and personal and societal communication goals. By designing a portfolio with an advisor's input, guidance, and approval, graduate students can gauge how much outreach is appropriate given their other commitments to teaching, research, and classes. The student benefits from the advisors' experience and mentorship, promotes the group's research, and establishes a track record of engagement. When graduate student participation in science communication is discussed, it is often recommended that institutions offer or require more training in communication, project management, and leadership. We suggest that graduate students can also adopt a do-it-yourself approach that includes determining students' own outreach objectives and time constraints and communicating these with their advisor. By doing so we hope students will help create a new culture of science communication in graduate student education.


Assuntos
Conservação dos Recursos Naturais , Educação de Pós-Graduação/métodos , Disseminação de Informação , Estudantes , Ecologia
13.
Ecology ; 93(1): 35-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22486085

RESUMO

The hydrologic regime is regarded as the primary driver of freshwater ecosystems, structuring the physical habitat template, providing connectivity, framing biotic interactions, and ultimately selecting for specific life histories of aquatic organisms. In the present study, we tested ecological theory predicting directional relationships between major dimensions of the flow regime and life history composition of fish assemblages in perennial free-flowing rivers throughout the continental United States. Using long-term discharge records and fish trait and survey data for 109 stream locations, we found that 11 out of 18 relationships (61%) tested between the three life history strategies (opportunistic, periodic, and equilibrium) and six hydrologic metrics (two each describing flow variability, predictability, and seasonality) were statistically significant (P < or = 0.05) according to quantile regression. Our results largely support a priori hypotheses of relationships between specific flow indices and relative prevalence of fish life history strategies, with 82% of all significant relationships observed supporting predictions from life history theory. Specifically, we found that (1) opportunistic strategists were positively related to measures of flow variability and negatively related to predictability and seasonality, (2) periodic strategists were positively related to high flow seasonality and negatively related to variability, and (3) the equilibrium strategists were negatively related to flow variability and positively related to predictability. Our study provides important empirical evidence illustrating the value of using life history theory to understand both the patterns and processes by which fish assemblage structure is shaped by adaptation to natural regimes of variability, predictability, and seasonality of critical flow events over broad biogeographic scales.


Assuntos
Ecossistema , Peixes/fisiologia , Modelos Biológicos , Rios , Animais , Dinâmica Populacional , Fatores de Tempo , Estados Unidos
14.
Mol Ecol ; 19(5): 940-51, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20149093

RESUMO

Phenotypically diverse Lake Malawi cichlids exhibit similar genomes. The extensive sharing of genetic polymorphism among forms has both intrigued and frustrated biologists trying to understand the nature of diversity in this and other rapidly evolving systems. Shared polymorphism might result from hybridization and/or the retention of ancestrally polymorphic alleles. To examine these alternatives, we used new genomic tools to characterize genetic differentiation in widespread, geographically structured populations of Labeotropheus fuelleborni and Metriaclima zebra. These phenotypically distinct species share mitochondrial DNA (mtDNA) haplotypes and show greater mtDNA differentiation among localities than between species. However, Bayesian analysis of nuclear single nucleotide polymorphism (SNP) data revealed two distinct genetic clusters corresponding perfectly to morphologically diagnosed L. fuelleborni and M. zebra. This result is a function of the resolving power of the multi-locus dataset, not a conflict between nuclear and mitochondrial partitions. Locus-by-locus analysis showed that mtDNA differentiation between species (F(CT)) was nearly identical to the median single-locus SNP F(CT). Finally, we asked whether there is evidence for gene flow at sites of co-occurrence. We used simulations to generate a null distribution for the level of differentiation between co-occurring populations of L. fuelleborni and M. zebra expected if there was no hybridization. The null hypothesis was rejected for the SNP data; populations that co-occur at rock reef sites were slightly more similar than expected by chance, suggesting recent gene flow. The coupling of numerous independent markers with extensive geographic sampling and simulations utilized here provides a framework for assessing the prevalence of gene flow in recently diverged species.


Assuntos
Ciclídeos/genética , Fluxo Gênico , Genética Populacional , Polimorfismo de Nucleotídeo Único , África , Animais , Teorema de Bayes , Núcleo Celular/genética , Ciclídeos/classificação , Análise por Conglomerados , DNA Mitocondrial/genética , Geografia , Haplótipos , Modelos Genéticos , Análise de Sequência de DNA , Especificidade da Espécie
15.
Genome Biol ; 9(7): R113, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18616806

RESUMO

BACKGROUND: Cichlid fish from East Africa are remarkable for phenotypic and behavioral diversity on a backdrop of genomic similarity. In 2006, the Joint Genome Institute completed low coverage survey sequencing of the genomes of five phenotypically and ecologically diverse Lake Malawi species. We report a computational and comparative analysis of these data that provides insight into the mechanisms that make closely related species different from one another. RESULTS: We produced assemblies for the five species ranging in aggregate length from 68 to 79 megabase pairs, identified putative orthologs for more than 12,000 human genes, and predicted more than 32,000 cross-species single nucleotide polymorphisms (SNPs). Nucleotide diversity was lower than that found among laboratory strains of the zebrafish. We collected around 36,000 genotypes to validate a subset of SNPs within and among populations and across multiple individuals of about 75 Lake Malawi species. Notably, there were no fixed differences observed between focal species nor between major lineages. Roughly 3% to 5% of loci surveyed are statistical outliers for genetic differentiation (FST) within species, between species, and between major lineages. Outliers for FST are candidate genes that may have experienced a history of natural selection in the Malawi lineage. CONCLUSION: We present a novel genome sequencing strategy, which is useful when evolutionary diversity is the question of interest. Lake Malawi cichlids are phenotypically and behaviorally diverse, but they appear genetically like a subdivided population. The unique structure of Lake Malawl cichlid genomes should facilitate conceptually new experiments, employing SNPs to identity genotype-phenotype association, using the entire species flock as a mapping panel.


Assuntos
Ciclídeos/genética , Polimorfismo de Nucleotídeo Único , África Oriental , Animais , Sequência de Bases , Ciclídeos/classificação , Análise por Conglomerados , Proteínas de Peixes/genética , Água Doce , Genômica , Humanos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...